Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment

نویسندگان

  • Ya Shen
  • Jia Zhao
  • César de la Fuente-Núñez
  • Zhejun Wang
  • Robert E. W. Hancock
  • Clive R. Roberts
  • Jingzhi Ma
  • Jun Li
  • Markus Haapasalo
  • Qi Wang
چکیده

We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and Experimental Validation of a Model for Oral Multispecies Biofilm Recovery after Chlorhexidine Treatment IMI PREPRINT SERIES

Short title: Biofilm resistance to chlorhexidine ¤ These authors contributed equally to this work. Abstract We combined experiments and mathematical modeling to study the recovery of oral multispecies biofilms following antimicrobial treatment, and further utilized mathematical modelling to explore the dynamics of the tolerance mechanisms of biofilms. Specifically, we investigated the proportio...

متن کامل

Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide

Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral m...

متن کامل

A periodontitis-associated multispecies model of an oral biofilm

PURPOSE While single-species biofilms have been studied extensively, we know notably little regarding multispecies biofilms and their interactions. The purpose of this study was to develop and evaluate an in vitro multispecies dental biofilm model that aimed to mimic the environment of chronic periodontitis. METHODS Streptococcus gordonii KN1, Fusobacterium nucleatum ATCC23726, Aggregatibacte...

متن کامل

Treatment of Oral Biofilms by a D-Enantiomeric Peptide

Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to t...

متن کامل

The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm.

AIM To establish a nutrient-stressed multispecies model biofilm and investigate the dynamics of biofilm killing and disruption by 1% trypsin and 1% proteinase K with or without ultrasonic activation. METHODOLOGY Nutrient-stressed biofilms (Propionibacterium acnes, Staphylococcus epidermidis, Actinomyces radicidentis, Streptococcus mitis and Enterococcus faecalis OMGS 3202) were grown on hydro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016